منابع مشابه
Temporal and statistical information in causal structure learning.
Three experiments examined children's and adults' abilities to use statistical and temporal information to distinguish between common cause and causal chain structures. In Experiment 1, participants were provided with conditional probability information and/or temporal information and asked to infer the causal structure of a 3-variable mechanical system that operated probabilistically. Particip...
متن کاملCausal models and learning from data: integrating causal modeling and statistical estimation.
The practice of epidemiology requires asking causal questions. Formal frameworks for causal inference developed over the past decades have the potential to improve the rigor of this process. However, the appropriate role for formal causal thinking in applied epidemiology remains a matter of debate. We argue that a formal causal framework can help in designing a statistical analysis that comes a...
متن کاملCausal Networks Learning Acausal Networks Learning Influence Diagrams Learning Causal-Network Parameters Learning Causal-Network Structure Learning Hidden Variables Learning More General Causal Models Advances: Learning Causal Networks
Bayesian methods have been developed for learning Bayesian networks from data. Most of this work has concentrated on Bayesian networks interpreted as a representation of probabilistic conditional independence without considering causation. Other researchers have shown that having a causal interpretation can be important, because it allows us to predict the effects of interventions in a domain. ...
متن کاملCausal relationship and confounding in statistical models.
Randomized trials are designed to eliminate systematic error (bias) when estimating the effect of an intervention (usually a treatment) through randomized allocation of patients to treatment with concealment of allocation. In an observational study, no disturbance of the process of care takes place and the outcome is merely ‘observed’ along with other relevant information, such as patients’ pre...
متن کاملGeneralizability of Causal and Statistical Relations
The problem of generalizability of empirical findings (experimental and observational) to new environments, settings, and populations is one of the central problems in causal inference. Experiments in the sciences are invariably conducted with the intent of being used elsewhere (e.g., outside the laboratory), where conditions are likely to be different. This practice is based on the premise tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2012
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2012.55.00038